ISOMERIZATION OF BUTYNES TO 1,3-BUTADIENE OVER SOLID BASE CATALYSTS

Kenji SATO and Hideshi HATTORI*

Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060

l-Butyne and 2-butyne underwent isomerization to 1,3-butadiene over CaO, SrO, MgO, ${\rm La_2O_3}$, ${\rm ThO_2}$ and ${\rm ZrO_2}$ catalysts below 100°C. Among these catalysts, the CaO catalyst exhibited the highest activity, and was active even at 30°C.

Although alkynes easily undergo isomerization to yield isomeric alkynes and allenes with basic catalysts, isomerization of alkynes to the most stable isomers, conjugated dienes, takes place only under a severe condition. For instance, 1-hexyne isomerized to give only 2.3% 1,3-hexadiene with t-BuOK in dimethylsulfoxide at 72°C in 92h. Isomerization of 1-butyne over NaOH/Al $_2$ O $_3$ at 400°C yielded only 9% 1,3-butadiene. We wish to report that certain types of solid base catalysts are active for isomerization of 1-butyne or 2-butyne to 1,3-butadiene below 100°C.

The catalysts which showed activities were MgO, CaO, SrO, ${\rm La_2O_3}$, ThO₂, and ${\rm ZrO_2}$. The MgO, CaO, and SrO catalysts were prepared by decomposition of Ca(OH)₂ (Kanto Chemicals Co.), Mg(OH)₂ (Kanto Chemicals Co.), and SrCO₃ (E. Merck Co.), respectively, under a vacuum at elevated temperatures. The ${\rm La_2O_3}$ catalyst was

prepared from aqueous $\operatorname{La(NO_3)}_3$ by precipitation with aqueous ammonia followed by washing, drying, and outgassing at elevated temperatures. The $\operatorname{ThO_2}$ and $\operatorname{ZrO_2}$ catalysts were prepared from aqueous solutions of $\operatorname{Th(NO_3)}_4$ and $\operatorname{ZrOCl_2}_2$ by precipitation with aqueous ammonia followed by washing, drying, calcining in air, and outgassing at elevated temperatures.

l-Butyne and 2-butyne were obtained from Tokyo Chemical Industry Co., Ltd. and purified by passage through 3A molecular sieves at dry ice-acetone temperature.

A closed recirculation reactor of a volume 300ml was

Fig.1 Time dependence of composition in isomerization of 1-butyne at 30°C on CaO(0.10 g) outgassed at 600°C

Table	1	Activities	of	Catalysts	for	Isomerization
of 1-Butyne and 2-Butyne						

Reactant	Catalyst	Pretreat. temp./°C	Reaction temp./°C	Activity ^{a)}
	Ca0	600 ^b)	0	123
	SrO	1000	0	4
1-Butyne	La ₂ O ₃	800	0	3
1-Butyne	MgO	800	30	12
	ThO2	500	30	2
	SrO La ₂ O ₃ MgO ThO ₂ ZrO ₂	700	30	1
	Ca0	800	30	20
	SrO	1000	30	1
	SrO La ₂ O ₃	700	100	15
2-Butyne	MgO	600	100	5
	ThO2	500	100	1
	ThO ₂	700	100	1

a)unit: 10^{18} molecules·min⁻¹·g⁻¹ b)CaO pretreated at 800°C showed the maxinum activity which was too high to measure.

employed for carrying out the reactions. About 20 Torr of 1-butyne or 2-butyne was allowed to react. In some experiments, the reaction was carried out with 40 Torr H₂. The presence of H₂ did not affect at all.

Time dependence of the composition in the reaction of 1-butyne over the CaO catalyst which had been outgassed at 600°C is shown in Fig. 1. 1-Butyne rapidly underwent isomerization to 2-butyne and 1,2-butadiene followed by rather slow isomerization to yield 1,3-butadiene. Over the catalyst outgassed at 800°C, the reaction proceeded much faster

than that observed for the CaO catalyst outgassed at 600°C, and 1-butyne converted to 100% 2-butyne in 5 min followed by isomerization to 1,3-butadiene.

The activities of the catalysts examined for the reactions of 1-butyne and of 2-butyne are summarized in Table 1. Since the isomerization of 1-butyne to 2-butyne and 1,2-butadiene was much faster than that of 1-butyne to 1,3-butadiene, the activity for the reaction of 1-butyne represents the rate of conversion of 1-butyne to 2-butyne and 1,2-butadiene. The data given in Table 1 are those obtained for the catalysts pretreated under optimum conditions.

For both 1-butyne isomerization and 2-butyne isomerization, the activities of the catalysts per on the unit weight basis were in the following order;

 $CaO > SrO > La_2O_3 > MgO > ThO_2 > ZrO_2$.

Of these catalysts, the CaO and SrO catalysts catalyzed the isomerization to produce 1,3-butadiene at 30 °C, which are much more active than known catalyst NaOH/Al $_2$ O $_3$ which needs 400 °C to produce 1,3-butadiene.

References

- 1. H. Pines and Y. M. Stalick, "Base-Catalyzed Reactions of Hydrocarbons and Related compounds" Academic Press Inc., New York (1977), p.124.
- 2. M. L. Farmer, W. E. Billups, R. B. Greenlee, and A. N. Kurtz, J. Org. Chem., 31, 2885 (1966).
- L. E. Calihan, E. L. Kay, D. T. Roberts, Jr., and L. B. Wakeflied, Ind. Eng. Chem., Prod. Res. Dev., <u>14</u>, 287 (1975).

(Received September 27, 1982)